Properties

Label 1600.4623.10.e1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}:C_8$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $a, c^{4}, a^{2}, c^{10}, c^{5}, a^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{20}^2.C_2^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^6.C_2^6)$
$\operatorname{Aut}(H)$ $C_2^4:D_4\times F_5$, of order \(2560\)\(\medspace = 2^{9} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_5\times C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_4\times C_{20}$
Normalizer:$C_{20}^2.C_2^2$
Complements:$C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$
Minimal over-subgroups:$C_{20}:C_{40}$$C_4^2.D_{10}$
Maximal under-subgroups:$C_4\times C_{20}$$C_{10}:C_8$$C_{10}:C_8$$C_4\times C_8$

Other information

Möbius function$1$
Projective image$C_{10}\times D_{10}$