Properties

Label 1600.2017.2.b1
Order $ 2^{5} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{100}:C_2^3$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Generators: $a, d^{4}, c^{2}, d^{25}, b, d^{20}, d^{50}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{50}.C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.C_{75}.C_{10}.C_2^3$
$\operatorname{Aut}(H)$ $C_2^4.C_2^4.C_{75}.C_{10}.C_2^2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(96000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_{25}:C_4$, of order \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$D_{50}.C_2^4$
Minimal over-subgroups:$D_{50}.C_2^4$
Maximal under-subgroups:$C_4\times D_{50}$$C_4\times D_{50}$$C_2^2\times D_{50}$$C_2^2\times C_{100}$$C_2^2.D_{50}$$C_{20}:C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{50}:C_4$