Properties

Label 1600.2017.10.b1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}:C_2^3$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, d^{20}, c^{2}, d^{25}, b, d^{50}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{50}.C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.C_{75}.C_{10}.C_2^3$
$\operatorname{Aut}(H)$ $F_5\times C_2^6:S_4$, of order \(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$F_5\times C_2^3:S_4$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$D_{10}.C_2^4$
Normal closure:$C_{100}:C_2^3$
Core:$C_2^2\times C_{20}$
Minimal over-subgroups:$C_{100}:C_2^3$$D_{10}.C_2^4$
Maximal under-subgroups:$C_2^2\times C_{20}$$C_4\times D_{10}$$C_4\times D_{10}$$C_2^2\times D_{10}$$C_2^2.D_{10}$$C_2^3\times C_4$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{50}:C_4$