Properties

Label 1600.1937.200.a1
Order $ 2^{3} $
Index $ 2^{3} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(2\)
Generators: $a^{2}, b^{20}, c^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_{10}^2.D_8$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5:D_{20}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_{10}^2:(C_2\times \GL(2,5))$, of order \(96000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \)
Outer Automorphisms: $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}^2.C_2^3.C_2^6.S_5$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(3072000\)\(\medspace = 2^{13} \cdot 3 \cdot 5^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}^2.D_8$
Normalizer:$C_{10}^2.D_8$
Minimal over-subgroups:$C_2^2\times C_{10}$$C_2^2\times C_4$$C_2^2\times C_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_5:D_{20}$