Subgroup ($H$) information
| Description: | $C_5^2$ |
| Order: | \(25\)\(\medspace = 5^{2} \) |
| Index: | \(64\)\(\medspace = 2^{6} \) |
| Exponent: | \(5\) |
| Generators: |
$b^{4}, c^{4}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{20}^2.C_2^2$ |
| Order: | \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_4.D_8$ |
| Order: | \(64\)\(\medspace = 2^{6} \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Automorphism Group: | $C_2^2\times D_4^2$, of order \(256\)\(\medspace = 2^{8} \) |
| Outer Automorphisms: | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) |
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{10}^2.C_2^4.C_2^4.S_5$ |
| $\operatorname{Aut}(H)$ | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6400\)\(\medspace = 2^{8} \cdot 5^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_{20}^2.C_2$ | ||
| Normalizer: | $C_{20}^2.C_2^2$ | ||
| Complements: | $C_4.D_8$ | ||
| Minimal over-subgroups: | $C_5\times C_{10}$ | $C_5\times C_{10}$ | $C_5\times C_{10}$ |
| Maximal under-subgroups: | $C_5$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_{20}^2.C_2^2$ |