Properties

Label 1600.1933.20.b1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:C_{20}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $b^{5}, b^{4}, b^{10}, b^{10}c^{15}, c^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{20}^2.C_2^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5:C_4$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}^2.C_2^4.C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_2^3.C_2^4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$C_2^3.C_2^4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_{20}^2.C_2^2$
Minimal over-subgroups:$C_{20}:C_{20}$$C_{20}:Q_8$
Maximal under-subgroups:$C_2\times C_{20}$$C_2\times C_{20}$$C_4:C_4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image$C_{10}^2:C_4$