Properties

Label 1597200.j.20._.E
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3:C_{60}$
Order: \(79860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 8 & 8 & 3 & 0 \\ 6 & 8 & 0 & 3 \end{array}\right), \left(\begin{array}{rrrr} 2 & 9 & 8 & 7 \\ 3 & 9 & 6 & 3 \\ 6 & 5 & 3 & 0 \\ 10 & 4 & 4 & 6 \end{array}\right), \left(\begin{array}{rrrr} 2 & 8 & 6 & 7 \\ 7 & 3 & 0 & 6 \\ 1 & 4 & 10 & 3 \\ 2 & 1 & 4 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 8 & 10 & 10 \\ 9 & 4 & 8 & 3 \\ 10 & 4 & 1 & 9 \\ 5 & 5 & 3 & 6 \end{array}\right), \left(\begin{array}{rrrr} 9 & 8 & 2 & 0 \\ 10 & 2 & 1 & 2 \\ 5 & 8 & 0 & 3 \\ 2 & 5 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 6 & 7 & 7 & 0 \\ 9 & 9 & 6 & 0 \\ 9 & 9 & 5 & 1 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, monomial (hence solvable), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{11}^3:(C_{120}:C_{10})$
Order: \(1597200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(127776000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $C_{11}^3.C_{60}.C_5.C_2^4$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed