Properties

Label 1597200.j
Order \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 5^{2} \)
$\card{Z(G)}$ 10
$\card{\Aut(G)}$ \( 2^{8} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 5^{2} \)
Perm deg. $90$
Trans deg. $1320$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 90 | (86,87,88,89,90), (1,2,4,7,14,9,31,40,8,11,15)(3,16,19,32,18,20,5,12,10,29,23)(6,24,42,34,30,13,28,33,25,39,21)(17,41,43,62,47,48,22,36,35,46,52)(26,57,59,63,55,45,53,66,37,65,51)(27,60,61,49,44,50,58,38,54,56,64)(67,68,72,75,70,71,77,69,73,74,76)(86,88,90,87,89), (1,3,7,19,4,20,31,18,2,10,15,32,40,16,8,29,14,23,11,5)(6,17,42,41,13,35,30,43,25,47,34,36,24,22,39,52,21,48,28,62)(9,12)(26,58,66,49,57,44,63,27,53,50,45,38,65,64,55,56,59,61,51,54)(33,46)(37,60)(67,69,76,71,77,73,68,74,75,72)(78,79,82,84,81,85,80,83)(86,89,87,90,88), (1,4,9,14,8,7,2,11,15,31)(3,12,16,32,5,20,29,18,19,23)(6,25,39,13,21,24,30,34,33,42)(17,43,48,47,35,62,41,46,52,22)(27,60,54,61,44,38,58,64,50,49)(37,57,66,45,59,63,51,55,53,65)(67,70,74,69,76)(68,73,75,71,72)(78,80,81,82)(79,83,85,84)(86,88,90,87,89), (1,5,14,23,40,19,2,12,4,10)(3,9)(6,26,42,57,39,51,28,63,24,53)(7,29,11,18,8,32,15,20,31,16)(13,37,34,66,33,65,21,45,30,59)(17,44,46,27,43,54,48,49,52,61)(22,50,35,56,47,60,41,58,36,38)(25,55)(62,64)(68,73,74,77,70,76,75,72,71,69)(79,84)(80,82)(83,85)(86,90,89,88,87), (78,81)(79,85)(80,82)(83,84)(86,87,88,89,90), (1,6,27)(2,13,38,11,24,54,14,39,58,7,30,64,9,34,61)(3,17,45,18,47,57,12,36,65,16,41,55,19,43,63)(4,21,49,40,42,50,8,33,60,31,25,56,15,28,44)(5,22,51,32,62,59,29,46,66,10,35,37,23,52,53)(20,48,26)(67,71,75,77,69)(68,74,73,70,76)(78,81)(79,85)(80,82)(83,84)(86,88,90,87,89), (1,7,31,11,2,14,40,15,4,9,8)(3,18,10,16,20,29,19,5,23,32,12)(6,28,24,33,42,25,34,39,30,21,13)(17,36,62,52,22,43,46,48,41,35,47)(26,59,55,53,37,51,57,63,45,66,65)(27,54,50,61,64,38,44,60,56,58,49)(67,72,70,77,73,76,68,75,71,69,74)(86,90,89,88,87), (1,8,9,4,15,40,14,2,11,31,7)(6,28,24,33,42,25,34,39,30,21,13)(17,46,36,48,62,41,52,35,22,47,43)(26,45,51,55,65,63,37,59,66,57,53)(27,60,61,49,44,50,58,38,54,56,64)(67,72,70,77,73,76,68,75,71,69,74)(78,81)(79,85)(80,82)(83,84)(86,89,87,90,88), (1,9,8,2,15)(3,19,16,12,18)(4,14,7,11,31)(5,23,10,29,32)(6,24,28,39,42)(13,30,21,33,34)(17,46,52,47,36)(26,51,45,59,65)(27,61,60,38,44)(35,48,41,62,43)(37,53,66,57,55)(49,58,64,54,56)(67,73,70,77,71)(68,72,69,76,75) >;
 
Copy content gap:G := Group( (86,87,88,89,90), (1,2,4,7,14,9,31,40,8,11,15)(3,16,19,32,18,20,5,12,10,29,23)(6,24,42,34,30,13,28,33,25,39,21)(17,41,43,62,47,48,22,36,35,46,52)(26,57,59,63,55,45,53,66,37,65,51)(27,60,61,49,44,50,58,38,54,56,64)(67,68,72,75,70,71,77,69,73,74,76)(86,88,90,87,89), (1,3,7,19,4,20,31,18,2,10,15,32,40,16,8,29,14,23,11,5)(6,17,42,41,13,35,30,43,25,47,34,36,24,22,39,52,21,48,28,62)(9,12)(26,58,66,49,57,44,63,27,53,50,45,38,65,64,55,56,59,61,51,54)(33,46)(37,60)(67,69,76,71,77,73,68,74,75,72)(78,79,82,84,81,85,80,83)(86,89,87,90,88), (1,4,9,14,8,7,2,11,15,31)(3,12,16,32,5,20,29,18,19,23)(6,25,39,13,21,24,30,34,33,42)(17,43,48,47,35,62,41,46,52,22)(27,60,54,61,44,38,58,64,50,49)(37,57,66,45,59,63,51,55,53,65)(67,70,74,69,76)(68,73,75,71,72)(78,80,81,82)(79,83,85,84)(86,88,90,87,89), (1,5,14,23,40,19,2,12,4,10)(3,9)(6,26,42,57,39,51,28,63,24,53)(7,29,11,18,8,32,15,20,31,16)(13,37,34,66,33,65,21,45,30,59)(17,44,46,27,43,54,48,49,52,61)(22,50,35,56,47,60,41,58,36,38)(25,55)(62,64)(68,73,74,77,70,76,75,72,71,69)(79,84)(80,82)(83,85)(86,90,89,88,87), (78,81)(79,85)(80,82)(83,84)(86,87,88,89,90), (1,6,27)(2,13,38,11,24,54,14,39,58,7,30,64,9,34,61)(3,17,45,18,47,57,12,36,65,16,41,55,19,43,63)(4,21,49,40,42,50,8,33,60,31,25,56,15,28,44)(5,22,51,32,62,59,29,46,66,10,35,37,23,52,53)(20,48,26)(67,71,75,77,69)(68,74,73,70,76)(78,81)(79,85)(80,82)(83,84)(86,88,90,87,89), (1,7,31,11,2,14,40,15,4,9,8)(3,18,10,16,20,29,19,5,23,32,12)(6,28,24,33,42,25,34,39,30,21,13)(17,36,62,52,22,43,46,48,41,35,47)(26,59,55,53,37,51,57,63,45,66,65)(27,54,50,61,64,38,44,60,56,58,49)(67,72,70,77,73,76,68,75,71,69,74)(86,90,89,88,87), (1,8,9,4,15,40,14,2,11,31,7)(6,28,24,33,42,25,34,39,30,21,13)(17,46,36,48,62,41,52,35,22,47,43)(26,45,51,55,65,63,37,59,66,57,53)(27,60,61,49,44,50,58,38,54,56,64)(67,72,70,77,73,76,68,75,71,69,74)(78,81)(79,85)(80,82)(83,84)(86,89,87,90,88), (1,9,8,2,15)(3,19,16,12,18)(4,14,7,11,31)(5,23,10,29,32)(6,24,28,39,42)(13,30,21,33,34)(17,46,52,47,36)(26,51,45,59,65)(27,61,60,38,44)(35,48,41,62,43)(37,53,66,57,55)(49,58,64,54,56)(67,73,70,77,71)(68,72,69,76,75) );
 
Copy content sage:G = PermutationGroup(['(86,87,88,89,90)', '(1,2,4,7,14,9,31,40,8,11,15)(3,16,19,32,18,20,5,12,10,29,23)(6,24,42,34,30,13,28,33,25,39,21)(17,41,43,62,47,48,22,36,35,46,52)(26,57,59,63,55,45,53,66,37,65,51)(27,60,61,49,44,50,58,38,54,56,64)(67,68,72,75,70,71,77,69,73,74,76)(86,88,90,87,89)', '(1,3,7,19,4,20,31,18,2,10,15,32,40,16,8,29,14,23,11,5)(6,17,42,41,13,35,30,43,25,47,34,36,24,22,39,52,21,48,28,62)(9,12)(26,58,66,49,57,44,63,27,53,50,45,38,65,64,55,56,59,61,51,54)(33,46)(37,60)(67,69,76,71,77,73,68,74,75,72)(78,79,82,84,81,85,80,83)(86,89,87,90,88)', '(1,4,9,14,8,7,2,11,15,31)(3,12,16,32,5,20,29,18,19,23)(6,25,39,13,21,24,30,34,33,42)(17,43,48,47,35,62,41,46,52,22)(27,60,54,61,44,38,58,64,50,49)(37,57,66,45,59,63,51,55,53,65)(67,70,74,69,76)(68,73,75,71,72)(78,80,81,82)(79,83,85,84)(86,88,90,87,89)', '(1,5,14,23,40,19,2,12,4,10)(3,9)(6,26,42,57,39,51,28,63,24,53)(7,29,11,18,8,32,15,20,31,16)(13,37,34,66,33,65,21,45,30,59)(17,44,46,27,43,54,48,49,52,61)(22,50,35,56,47,60,41,58,36,38)(25,55)(62,64)(68,73,74,77,70,76,75,72,71,69)(79,84)(80,82)(83,85)(86,90,89,88,87)', '(78,81)(79,85)(80,82)(83,84)(86,87,88,89,90)', '(1,6,27)(2,13,38,11,24,54,14,39,58,7,30,64,9,34,61)(3,17,45,18,47,57,12,36,65,16,41,55,19,43,63)(4,21,49,40,42,50,8,33,60,31,25,56,15,28,44)(5,22,51,32,62,59,29,46,66,10,35,37,23,52,53)(20,48,26)(67,71,75,77,69)(68,74,73,70,76)(78,81)(79,85)(80,82)(83,84)(86,88,90,87,89)', '(1,7,31,11,2,14,40,15,4,9,8)(3,18,10,16,20,29,19,5,23,32,12)(6,28,24,33,42,25,34,39,30,21,13)(17,36,62,52,22,43,46,48,41,35,47)(26,59,55,53,37,51,57,63,45,66,65)(27,54,50,61,64,38,44,60,56,58,49)(67,72,70,77,73,76,68,75,71,69,74)(86,90,89,88,87)', '(1,8,9,4,15,40,14,2,11,31,7)(6,28,24,33,42,25,34,39,30,21,13)(17,46,36,48,62,41,52,35,22,47,43)(26,45,51,55,65,63,37,59,66,57,53)(27,60,61,49,44,50,58,38,54,56,64)(67,72,70,77,73,76,68,75,71,69,74)(78,81)(79,85)(80,82)(83,84)(86,89,87,90,88)', '(1,9,8,2,15)(3,19,16,12,18)(4,14,7,11,31)(5,23,10,29,32)(6,24,28,39,42)(13,30,21,33,34)(17,46,52,47,36)(26,51,45,59,65)(27,61,60,38,44)(35,48,41,62,43)(37,53,66,57,55)(49,58,64,54,56)(67,73,70,77,71)(68,72,69,76,75)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3958944283474403924029242890760400118176221842367205163565448028557722000900247390957000845308778404359244968937583710026685260913541720361536961404350060368039172617870937264933337651810300013999,1597200)'); a = G.1; b = G.3; c = G.8; d = G.9; e = G.10;
 

Group information

Description:$C_{11}^3:(C_{120}:C_{10})$
Order: \(1597200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(127776000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$, $C_5$ x 2, $C_{11}$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 11 12 15 20 22 24 30 33 40 44 55 60 66 110 120 132 165 220 330 660
Elements 1 1453 242 374 26624 242 5324 351872 1330 484 54208 374176 15850 10648 54208 2420 127776 18260 5320 108416 2420 63400 255552 4840 9680 73040 9680 19360 1597200
Conjugacy classes   1 2 1 2 24 1 2 48 18 2 24 48 20 4 24 1 48 25 72 48 1 80 96 2 4 100 4 8 710
Divisions 1 2 1 2 6 1 1 12 13 1 6 12 14 1 6 1 6 8 13 6 1 14 6 1 1 8 1 1 146
Autjugacy classes 1 2 1 2 5 1 1 10 5 2 5 10 6 2 5 1 5 4 5 10 1 6 10 2 1 4 1 2 110

Minimal presentations

Permutation degree:$90$
Transitive degree:$1320$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 60 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e \mid a^{10}=b^{120}=c^{11}=d^{11}=e^{11}=[c,d]=[c,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -2, -5, -2, -2, -2, -3, -5, -11, -11, 11, 20, 31683302, 6534162, 82, 59144803, 19536413, 113, 54802004, 34651014, 144, 57076805, 3962415, 235, 768007, 432017, 96027, 118800008, 5346018, 9741628, 6296438, 3118548, 386158, 154440009, 65340019, 2772029, 3960039, 1617049, 1188059]); a,b,c,d,e := Explode([G.1, G.3, G.8, G.9, G.10]); AssignNames(~G, ["a", "a2", "b", "b2", "b4", "b8", "b24", "c", "d", "e"]);
 
Copy content gap:G := PcGroupCode(3958944283474403924029242890760400118176221842367205163565448028557722000900247390957000845308778404359244968937583710026685260913541720361536961404350060368039172617870937264933337651810300013999,1597200); a := G.1; b := G.3; c := G.8; d := G.9; e := G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3958944283474403924029242890760400118176221842367205163565448028557722000900247390957000845308778404359244968937583710026685260913541720361536961404350060368039172617870937264933337651810300013999,1597200)'); a = G.1; b = G.3; c = G.8; d = G.9; e = G.10;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3958944283474403924029242890760400118176221842367205163565448028557722000900247390957000845308778404359244968937583710026685260913541720361536961404350060368039172617870937264933337651810300013999,1597200)'); a = G.1; b = G.3; c = G.8; d = G.9; e = G.10;
 
Permutation group:Degree $90$ $\langle(86,87,88,89,90), (1,2,4,7,14,9,31,40,8,11,15)(3,16,19,32,18,20,5,12,10,29,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 90 | (86,87,88,89,90), (1,2,4,7,14,9,31,40,8,11,15)(3,16,19,32,18,20,5,12,10,29,23)(6,24,42,34,30,13,28,33,25,39,21)(17,41,43,62,47,48,22,36,35,46,52)(26,57,59,63,55,45,53,66,37,65,51)(27,60,61,49,44,50,58,38,54,56,64)(67,68,72,75,70,71,77,69,73,74,76)(86,88,90,87,89), (1,3,7,19,4,20,31,18,2,10,15,32,40,16,8,29,14,23,11,5)(6,17,42,41,13,35,30,43,25,47,34,36,24,22,39,52,21,48,28,62)(9,12)(26,58,66,49,57,44,63,27,53,50,45,38,65,64,55,56,59,61,51,54)(33,46)(37,60)(67,69,76,71,77,73,68,74,75,72)(78,79,82,84,81,85,80,83)(86,89,87,90,88), (1,4,9,14,8,7,2,11,15,31)(3,12,16,32,5,20,29,18,19,23)(6,25,39,13,21,24,30,34,33,42)(17,43,48,47,35,62,41,46,52,22)(27,60,54,61,44,38,58,64,50,49)(37,57,66,45,59,63,51,55,53,65)(67,70,74,69,76)(68,73,75,71,72)(78,80,81,82)(79,83,85,84)(86,88,90,87,89), (1,5,14,23,40,19,2,12,4,10)(3,9)(6,26,42,57,39,51,28,63,24,53)(7,29,11,18,8,32,15,20,31,16)(13,37,34,66,33,65,21,45,30,59)(17,44,46,27,43,54,48,49,52,61)(22,50,35,56,47,60,41,58,36,38)(25,55)(62,64)(68,73,74,77,70,76,75,72,71,69)(79,84)(80,82)(83,85)(86,90,89,88,87), (78,81)(79,85)(80,82)(83,84)(86,87,88,89,90), (1,6,27)(2,13,38,11,24,54,14,39,58,7,30,64,9,34,61)(3,17,45,18,47,57,12,36,65,16,41,55,19,43,63)(4,21,49,40,42,50,8,33,60,31,25,56,15,28,44)(5,22,51,32,62,59,29,46,66,10,35,37,23,52,53)(20,48,26)(67,71,75,77,69)(68,74,73,70,76)(78,81)(79,85)(80,82)(83,84)(86,88,90,87,89), (1,7,31,11,2,14,40,15,4,9,8)(3,18,10,16,20,29,19,5,23,32,12)(6,28,24,33,42,25,34,39,30,21,13)(17,36,62,52,22,43,46,48,41,35,47)(26,59,55,53,37,51,57,63,45,66,65)(27,54,50,61,64,38,44,60,56,58,49)(67,72,70,77,73,76,68,75,71,69,74)(86,90,89,88,87), (1,8,9,4,15,40,14,2,11,31,7)(6,28,24,33,42,25,34,39,30,21,13)(17,46,36,48,62,41,52,35,22,47,43)(26,45,51,55,65,63,37,59,66,57,53)(27,60,61,49,44,50,58,38,54,56,64)(67,72,70,77,73,76,68,75,71,69,74)(78,81)(79,85)(80,82)(83,84)(86,89,87,90,88), (1,9,8,2,15)(3,19,16,12,18)(4,14,7,11,31)(5,23,10,29,32)(6,24,28,39,42)(13,30,21,33,34)(17,46,52,47,36)(26,51,45,59,65)(27,61,60,38,44)(35,48,41,62,43)(37,53,66,57,55)(49,58,64,54,56)(67,73,70,77,71)(68,72,69,76,75) >;
 
Copy content gap:G := Group( (86,87,88,89,90), (1,2,4,7,14,9,31,40,8,11,15)(3,16,19,32,18,20,5,12,10,29,23)(6,24,42,34,30,13,28,33,25,39,21)(17,41,43,62,47,48,22,36,35,46,52)(26,57,59,63,55,45,53,66,37,65,51)(27,60,61,49,44,50,58,38,54,56,64)(67,68,72,75,70,71,77,69,73,74,76)(86,88,90,87,89), (1,3,7,19,4,20,31,18,2,10,15,32,40,16,8,29,14,23,11,5)(6,17,42,41,13,35,30,43,25,47,34,36,24,22,39,52,21,48,28,62)(9,12)(26,58,66,49,57,44,63,27,53,50,45,38,65,64,55,56,59,61,51,54)(33,46)(37,60)(67,69,76,71,77,73,68,74,75,72)(78,79,82,84,81,85,80,83)(86,89,87,90,88), (1,4,9,14,8,7,2,11,15,31)(3,12,16,32,5,20,29,18,19,23)(6,25,39,13,21,24,30,34,33,42)(17,43,48,47,35,62,41,46,52,22)(27,60,54,61,44,38,58,64,50,49)(37,57,66,45,59,63,51,55,53,65)(67,70,74,69,76)(68,73,75,71,72)(78,80,81,82)(79,83,85,84)(86,88,90,87,89), (1,5,14,23,40,19,2,12,4,10)(3,9)(6,26,42,57,39,51,28,63,24,53)(7,29,11,18,8,32,15,20,31,16)(13,37,34,66,33,65,21,45,30,59)(17,44,46,27,43,54,48,49,52,61)(22,50,35,56,47,60,41,58,36,38)(25,55)(62,64)(68,73,74,77,70,76,75,72,71,69)(79,84)(80,82)(83,85)(86,90,89,88,87), (78,81)(79,85)(80,82)(83,84)(86,87,88,89,90), (1,6,27)(2,13,38,11,24,54,14,39,58,7,30,64,9,34,61)(3,17,45,18,47,57,12,36,65,16,41,55,19,43,63)(4,21,49,40,42,50,8,33,60,31,25,56,15,28,44)(5,22,51,32,62,59,29,46,66,10,35,37,23,52,53)(20,48,26)(67,71,75,77,69)(68,74,73,70,76)(78,81)(79,85)(80,82)(83,84)(86,88,90,87,89), (1,7,31,11,2,14,40,15,4,9,8)(3,18,10,16,20,29,19,5,23,32,12)(6,28,24,33,42,25,34,39,30,21,13)(17,36,62,52,22,43,46,48,41,35,47)(26,59,55,53,37,51,57,63,45,66,65)(27,54,50,61,64,38,44,60,56,58,49)(67,72,70,77,73,76,68,75,71,69,74)(86,90,89,88,87), (1,8,9,4,15,40,14,2,11,31,7)(6,28,24,33,42,25,34,39,30,21,13)(17,46,36,48,62,41,52,35,22,47,43)(26,45,51,55,65,63,37,59,66,57,53)(27,60,61,49,44,50,58,38,54,56,64)(67,72,70,77,73,76,68,75,71,69,74)(78,81)(79,85)(80,82)(83,84)(86,89,87,90,88), (1,9,8,2,15)(3,19,16,12,18)(4,14,7,11,31)(5,23,10,29,32)(6,24,28,39,42)(13,30,21,33,34)(17,46,52,47,36)(26,51,45,59,65)(27,61,60,38,44)(35,48,41,62,43)(37,53,66,57,55)(49,58,64,54,56)(67,73,70,77,71)(68,72,69,76,75) );
 
Copy content sage:G = PermutationGroup(['(86,87,88,89,90)', '(1,2,4,7,14,9,31,40,8,11,15)(3,16,19,32,18,20,5,12,10,29,23)(6,24,42,34,30,13,28,33,25,39,21)(17,41,43,62,47,48,22,36,35,46,52)(26,57,59,63,55,45,53,66,37,65,51)(27,60,61,49,44,50,58,38,54,56,64)(67,68,72,75,70,71,77,69,73,74,76)(86,88,90,87,89)', '(1,3,7,19,4,20,31,18,2,10,15,32,40,16,8,29,14,23,11,5)(6,17,42,41,13,35,30,43,25,47,34,36,24,22,39,52,21,48,28,62)(9,12)(26,58,66,49,57,44,63,27,53,50,45,38,65,64,55,56,59,61,51,54)(33,46)(37,60)(67,69,76,71,77,73,68,74,75,72)(78,79,82,84,81,85,80,83)(86,89,87,90,88)', '(1,4,9,14,8,7,2,11,15,31)(3,12,16,32,5,20,29,18,19,23)(6,25,39,13,21,24,30,34,33,42)(17,43,48,47,35,62,41,46,52,22)(27,60,54,61,44,38,58,64,50,49)(37,57,66,45,59,63,51,55,53,65)(67,70,74,69,76)(68,73,75,71,72)(78,80,81,82)(79,83,85,84)(86,88,90,87,89)', '(1,5,14,23,40,19,2,12,4,10)(3,9)(6,26,42,57,39,51,28,63,24,53)(7,29,11,18,8,32,15,20,31,16)(13,37,34,66,33,65,21,45,30,59)(17,44,46,27,43,54,48,49,52,61)(22,50,35,56,47,60,41,58,36,38)(25,55)(62,64)(68,73,74,77,70,76,75,72,71,69)(79,84)(80,82)(83,85)(86,90,89,88,87)', '(78,81)(79,85)(80,82)(83,84)(86,87,88,89,90)', '(1,6,27)(2,13,38,11,24,54,14,39,58,7,30,64,9,34,61)(3,17,45,18,47,57,12,36,65,16,41,55,19,43,63)(4,21,49,40,42,50,8,33,60,31,25,56,15,28,44)(5,22,51,32,62,59,29,46,66,10,35,37,23,52,53)(20,48,26)(67,71,75,77,69)(68,74,73,70,76)(78,81)(79,85)(80,82)(83,84)(86,88,90,87,89)', '(1,7,31,11,2,14,40,15,4,9,8)(3,18,10,16,20,29,19,5,23,32,12)(6,28,24,33,42,25,34,39,30,21,13)(17,36,62,52,22,43,46,48,41,35,47)(26,59,55,53,37,51,57,63,45,66,65)(27,54,50,61,64,38,44,60,56,58,49)(67,72,70,77,73,76,68,75,71,69,74)(86,90,89,88,87)', '(1,8,9,4,15,40,14,2,11,31,7)(6,28,24,33,42,25,34,39,30,21,13)(17,46,36,48,62,41,52,35,22,47,43)(26,45,51,55,65,63,37,59,66,57,53)(27,60,61,49,44,50,58,38,54,56,64)(67,72,70,77,73,76,68,75,71,69,74)(78,81)(79,85)(80,82)(83,84)(86,89,87,90,88)', '(1,9,8,2,15)(3,19,16,12,18)(4,14,7,11,31)(5,23,10,29,32)(6,24,28,39,42)(13,30,21,33,34)(17,46,52,47,36)(26,51,45,59,65)(27,61,60,38,44)(35,48,41,62,43)(37,53,66,57,55)(49,58,64,54,56)(67,73,70,77,71)(68,72,69,76,75)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 10 & 2 & 8 & 3 \\ 9 & 5 & 6 & 0 \\ 9 & 5 & 7 & 2 \\ 1 & 9 & 1 & 3 \end{array}\right), \left(\begin{array}{rrrr} 8 & 2 & 9 & 6 \\ 1 & 0 & 2 & 3 \\ 1 & 8 & 3 & 9 \\ 10 & 7 & 7 & 0 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 5 & 9 & 4 & 0 \\ 2 & 2 & 10 & 0 \\ 2 & 2 & 6 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 5 & 3 & 8 \\ 10 & 6 & 4 & 5 \\ 8 & 8 & 6 & 4 \\ 9 & 10 & 6 & 6 \end{array}\right), \left(\begin{array}{rrrr} 3 & 2 & 9 & 8 \\ 10 & 6 & 4 & 9 \\ 6 & 4 & 1 & 9 \\ 0 & 6 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 7 & 5 & 10 & 0 \\ 6 & 6 & 5 & 0 \\ 3 & 6 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrr} 5 & 3 & 8 & 0 \\ 0 & 0 & 1 & 6 \\ 5 & 1 & 4 & 8 \\ 8 & 7 & 5 & 2 \end{array}\right), \left(\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right), \left(\begin{array}{rrrr} 0 & 10 & 3 & 5 \\ 10 & 8 & 3 & 3 \\ 6 & 7 & 4 & 1 \\ 0 & 6 & 1 & 1 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(11) | [[10, 2, 8, 3, 9, 5, 6, 0, 9, 5, 7, 2, 1, 9, 1, 3], [8, 2, 9, 6, 1, 0, 2, 3, 1, 8, 3, 9, 10, 7, 7, 0], [4, 0, 0, 0, 5, 9, 4, 0, 2, 2, 10, 0, 2, 2, 6, 4], [9, 5, 3, 8, 10, 6, 4, 5, 8, 8, 6, 4, 9, 10, 6, 6], [3, 2, 9, 8, 10, 6, 4, 9, 6, 4, 1, 9, 0, 6, 1, 4], [9, 0, 0, 0, 7, 5, 10, 0, 6, 6, 5, 0, 3, 6, 4, 1], [5, 3, 8, 0, 0, 0, 1, 6, 5, 1, 4, 8, 8, 7, 5, 2], [3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3], [8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8], [0, 10, 3, 5, 10, 8, 3, 3, 6, 7, 4, 1, 0, 6, 1, 1]] >;
 
Copy content gap:G := Group([[[ Z(11)^5, Z(11), Z(11)^3, Z(11)^8 ], [ Z(11)^6, Z(11)^4, Z(11)^9, 0*Z(11) ], [ Z(11)^6, Z(11)^4, Z(11)^7, Z(11) ], [ Z(11)^0, Z(11)^6, Z(11)^0, Z(11)^8 ]], [[ Z(11)^3, Z(11), Z(11)^6, Z(11)^9 ], [ Z(11)^0, 0*Z(11), Z(11), Z(11)^8 ], [ Z(11)^0, Z(11)^3, Z(11)^8, Z(11)^6 ], [ Z(11)^5, Z(11)^7, Z(11)^7, 0*Z(11) ]], [[ Z(11)^2, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^6, Z(11)^2, 0*Z(11) ], [ Z(11), Z(11), Z(11)^5, 0*Z(11) ], [ Z(11), Z(11), Z(11)^9, Z(11)^2 ]], [[ Z(11)^6, Z(11)^4, Z(11)^8, Z(11)^3 ], [ Z(11)^5, Z(11)^9, Z(11)^2, Z(11)^4 ], [ Z(11)^3, Z(11)^3, Z(11)^9, Z(11)^2 ], [ Z(11)^6, Z(11)^5, Z(11)^9, Z(11)^9 ]], [[ Z(11)^8, Z(11), Z(11)^6, Z(11)^3 ], [ Z(11)^5, Z(11)^9, Z(11)^2, Z(11)^6 ], [ Z(11)^9, Z(11)^2, Z(11)^0, Z(11)^6 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^2 ]], [[ Z(11)^6, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^7, Z(11)^4, Z(11)^5, 0*Z(11) ], [ Z(11)^9, Z(11)^9, Z(11)^4, 0*Z(11) ], [ Z(11)^8, Z(11)^9, Z(11)^2, Z(11)^0 ]], [[ Z(11)^4, Z(11)^8, Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^0, Z(11)^9 ], [ Z(11)^4, Z(11)^0, Z(11)^2, Z(11)^3 ], [ Z(11)^3, Z(11)^7, Z(11)^4, Z(11) ]], [[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^8, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8 ]], [[ Z(11)^3, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^3, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3 ]], [[ 0*Z(11), Z(11)^5, Z(11)^8, Z(11)^4 ], [ Z(11)^5, Z(11)^3, Z(11)^8, Z(11)^8 ], [ Z(11)^9, Z(11)^7, Z(11)^2, Z(11)^0 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(11), 4, 4) G = MatrixGroup([MS([[10, 2, 8, 3], [9, 5, 6, 0], [9, 5, 7, 2], [1, 9, 1, 3]]), MS([[8, 2, 9, 6], [1, 0, 2, 3], [1, 8, 3, 9], [10, 7, 7, 0]]), MS([[4, 0, 0, 0], [5, 9, 4, 0], [2, 2, 10, 0], [2, 2, 6, 4]]), MS([[9, 5, 3, 8], [10, 6, 4, 5], [8, 8, 6, 4], [9, 10, 6, 6]]), MS([[3, 2, 9, 8], [10, 6, 4, 9], [6, 4, 1, 9], [0, 6, 1, 4]]), MS([[9, 0, 0, 0], [7, 5, 10, 0], [6, 6, 5, 0], [3, 6, 4, 1]]), MS([[5, 3, 8, 0], [0, 0, 1, 6], [5, 1, 4, 8], [8, 7, 5, 2]]), MS([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]]), MS([[8, 0, 0, 0], [0, 8, 0, 0], [0, 0, 8, 0], [0, 0, 0, 8]]), MS([[0, 10, 3, 5], [10, 8, 3, 3], [6, 7, 4, 1], [0, 6, 1, 1]])])
 
Direct product: $C_5$ $\, \times\, $ $(C_{11}^3:(C_{120}:C_2))$
Semidirect product: $C_{11}^3$ $\,\rtimes\,$ $(C_{120}:C_{10})$ $(C_{11}^3.C_6.D_4)$ $\,\rtimes\,$ $C_5^2$ $(C_5\times C_{11}^3:C_{15})$ $\,\rtimes\,$ $\SD_{16}$ $(C_{11}^3:C_5^2)$ $\,\rtimes\,$ $(C_{24}:C_2)$ all 5
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_{11}^3:C_{120})$ . $C_{10}$ (5) $(C_{11}^3:C_{120})$ . $C_{10}$ $(C_5\times C_{11}^3:C_{40})$ . $S_3$ $(C_5\times C_{11}^3:C_{30})$ . $D_4$ all 59

Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.

Homology

Abelianization: $C_{10}^{2} \simeq C_{2}^{2} \times C_{5}^{2}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 110 normal subgroups (55 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{10}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_{11}^2:C_{132}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $710 \times 710$ character table is not available for this group.

Rational character table

The $146 \times 146$ rational character table is not available for this group.