Properties

Label 1597200.j.10._.B
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 11^{3} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{11}^2:D_{132}$
Order: \(159720\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{3} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 0 & 8 & 10 & 10 \\ 9 & 4 & 8 & 3 \\ 10 & 4 & 1 & 9 \\ 5 & 5 & 3 & 6 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 5 & 0 & 0 & 0 \\ 6 & 0 & 7 & 0 \\ 9 & 9 & 10 & 0 \\ 9 & 9 & 5 & 5 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 6 & 7 & 7 & 0 \\ 9 & 9 & 6 & 0 \\ 9 & 9 & 5 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 9 & 8 & 7 \\ 3 & 9 & 6 & 3 \\ 6 & 5 & 3 & 0 \\ 10 & 4 & 4 & 6 \end{array}\right), \left(\begin{array}{rrrr} 9 & 8 & 2 & 0 \\ 10 & 2 & 1 & 2 \\ 5 & 8 & 0 & 3 \\ 2 & 5 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 2 & 8 & 6 & 7 \\ 7 & 3 & 0 & 6 \\ 1 & 4 & 10 & 3 \\ 2 & 1 & 4 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 5 & 7 & 0 \\ 7 & 6 & 6 & 0 \\ 10 & 7 & 10 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_{11}^3:(C_{120}:C_{10})$
Order: \(1597200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(127776000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $C_{11}^3.C_6.C_{10}^2.C_2^5$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed