Properties

Label 15854469120.e.140._.GG
Order $ 2^{22} \cdot 3^{3} $
Index $ 2^{2} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}.S_4^3:C_2$
Order: \(113246208\)\(\medspace = 2^{22} \cdot 3^{3} \)
Index: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,20,8)(2,19,7)(3,24,10,6,22,11)(4,23,9,5,21,12)(13,14)(15,17)(16,18)(25,31,38,26,32,37) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^6.(C_2^{12}.(D_6\times S_7))$
Order: \(15854469120\)\(\medspace = 2^{24} \cdot 3^{3} \cdot 5 \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(31708938240\)\(\medspace = 2^{25} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ Group of order \(1811939328\)\(\medspace = 2^{26} \cdot 3^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$70$
Möbius function not computed
Projective image not computed