Properties

Label 158400.i.3960.T
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_4$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 8 & 0 & 2 & 0 \\ 5 & 3 & 0 & 9 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 5 & 8 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 5 & 6 & 10 & 7 \\ 6 & 6 & 5 & 10 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $\GL(2,11):D_6$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6).C_2^5.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{15}:Q_8$
Normalizer:$C_{120}.C_2^3$
Normal closure:$\SL(2,11):C_{10}$
Core:$C_{10}$
Minimal over-subgroups:$D_4\times C_{15}$$C_{15}:D_4$$C_5\times D_{12}$$D_4:C_{10}$$C_5\times D_8$$C_5\times D_8$$C_5\times \SD_{16}$$D_4:C_{10}$
Maximal under-subgroups:$C_2\times C_{10}$$C_{20}$$D_4$

Other information

Number of subgroups in this autjugacy class$165$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image not computed