Properties

Label 158400.i.165.C
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{120}.C_2^3$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 8 & 3 & 2 & 8 \\ 7 & 2 & 5 & 7 \\ 6 & 4 & 0 & 7 \\ 9 & 0 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 10 & 10 & 4 \\ 0 & 8 & 5 & 8 \\ 6 & 2 & 8 & 8 \\ 0 & 4 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 3 & 10 & 0 & 0 \\ 5 & 3 & 9 & 3 \\ 5 & 1 & 4 & 5 \\ 0 & 7 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 8 & 3 & 10 & 7 \\ 1 & 4 & 0 & 10 \\ 2 & 9 & 6 & 8 \\ 2 & 2 & 10 & 2 \end{array}\right), \left(\begin{array}{rrrr} 9 & 9 & 8 & 10 \\ 3 & 8 & 0 & 8 \\ 6 & 5 & 3 & 2 \\ 6 & 6 & 8 & 2 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 3 & 3 & 6 & 0 \\ 6 & 8 & 0 & 5 \\ 7 & 0 & 8 & 3 \\ 0 & 4 & 6 & 3 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $\GL(2,11):D_6$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6).C_2^5.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_3:(C_2^5.C_2^5)$
$W$$D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{120}.C_2^3$
Normal closure:$\GL(2,11):D_6$
Core:$C_5\times D_{12}$
Minimal over-subgroups:$C_5\times \GL(2,3):D_6$$C_{20}.D_6^2$
Maximal under-subgroups:$C_{40}:D_6$$C_{40}.D_6$$C_{40}:D_6$$C_{40}.D_6$$C_{60}.C_2^3$$C_{40}.D_6$$C_{60}.C_2^3$$C_{60}.D_4$$C_{40}:D_6$$D_8:C_{30}$$C_{60}.D_4$$C_{40}.C_2^3$$D_8:D_6$

Other information

Number of subgroups in this autjugacy class$165$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image not computed