Properties

Label 158400.i.3.a1
Order $ 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,11):C_2^2$
Order: \(52800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \)
Index: \(3\)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 7 & 0 & 7 & 2 \\ 2 & 8 & 9 & 7 \\ 9 & 10 & 3 & 0 \\ 3 & 9 & 9 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 9 & 8 & 10 \\ 3 & 8 & 0 & 8 \\ 6 & 5 & 3 & 2 \\ 6 & 6 & 8 & 2 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 8 & 4 & 8 & 8 \\ 8 & 10 & 0 & 7 \\ 4 & 4 & 6 & 5 \\ 7 & 10 & 1 & 9 \end{array}\right), \left(\begin{array}{rrrr} 3 & 3 & 6 & 0 \\ 6 & 8 & 0 & 5 \\ 7 & 0 & 8 & 3 \\ 0 & 4 & 6 & 3 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $\GL(2,11):D_6$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6).C_2^5.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2\times C_4\times \PSL(2,11).C_2\times D_4$
$\card{W}$\(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$\GL(2,11):C_2^2$
Normal closure:$\GL(2,11):D_6$
Core:$\GL(2,11):C_2$
Minimal over-subgroups:$\GL(2,11):D_6$
Maximal under-subgroups:$\GL(2,11):C_2$$C_2\times \GL(2,11)$$\GL(2,11):C_2$$(C_2\times \SL(2,11)):C_{10}$$\GL(2,11):C_2$$D_4.\PGL(2,11)$$C_{44}:C_{10}^2$$C_5\times \GL(2,3):C_2^2$$C_{120}.C_2^3$$C_{10}^2.C_2^3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image not computed