Properties

Label 158400.f.960.a1.a1
Order $ 3 \cdot 5 \cdot 11 $
Index $ 2^{6} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{165}$
Order: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Index: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 7 & 9 & 9 & 7 \\ 7 & 1 & 2 & 1 \\ 0 & 10 & 10 & 0 \\ 8 & 5 & 5 & 5 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 2 & 8 \\ 10 & 7 & 3 & 5 \\ 9 & 8 & 4 & 2 \\ 9 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2^2\times C_{20}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{660}$
Normalizer:$C_{132}.C_{10}^2$
Normal closure:$C_{15}\times \SL(2,11)$
Core:$C_{15}$
Minimal over-subgroups:$C_{165}:C_5$$C_{330}$$C_{330}$$C_{330}$
Maximal under-subgroups:$C_{55}$$C_{33}$$C_{15}$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function not computed
Projective image$C_3:Q_8\times \SL(2,11)$