Properties

Label 158400.f.8.a1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}\times \SL(2,11)$
Order: \(19800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 5 & 4 & 8 & 1 \\ 10 & 1 & 10 & 0 \\ 9 & 6 & 8 & 5 \\ 0 & 3 & 2 & 5 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 2 & 8 \\ 10 & 7 & 3 & 5 \\ 9 & 8 & 4 & 2 \\ 9 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 4 & 1 & 2 & 3 \\ 4 & 2 & 2 & 9 \\ 4 & 4 & 6 & 9 \\ 1 & 1 & 2 & 10 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 8 & 10 & 2 & 9 \\ 4 & 10 & 2 & 10 \\ 1 & 9 & 8 & 3 \\ 6 & 7 & 6 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $Q_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2\times C_4\times \PSL(2,11).C_2$
$W$$C_2\times \PSL(2,11)$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_{60}$
Normalizer:$C_{15}:Q_8\times \SL(2,11)$
Complements:$Q_8$ $Q_8$ $Q_8$ $Q_8$ $Q_8$ $Q_8$
Minimal over-subgroups:$C_{30}\times \SL(2,11)$
Maximal under-subgroups:$C_5\times \SL(2,11)$$C_3\times \SL(2,11)$$C_{15}\times \SL(2,5)$$C_{15}\times \SL(2,5)$$C_{110}:C_{15}$$C_{12}.C_{30}$

Other information

Möbius function not computed
Projective image not computed