Properties

Label 158400.f.7920.o1.a1
Order $ 2^{2} \cdot 5 $
Index $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 4 & 6 & 9 & 0 \\ 8 & 7 & 0 & 2 \\ 4 & 0 & 7 & 6 \\ 0 & 7 & 8 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 9 & 3 & 6 \\ 6 & 0 & 1 & 6 \\ 9 & 7 & 1 & 0 \\ 8 & 3 & 6 & 3 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{20}\times \SL(2,11)$
Normalizer:$C_5\times Q_8\times \SL(2,11)$
Normal closure:$C_3:C_{20}$
Core:$C_{10}$
Minimal over-subgroups:$C_{220}$$C_5\times C_{20}$$C_3:C_{20}$$C_{60}$$C_2\times C_{20}$$C_5\times Q_8$$C_5\times Q_8$
Maximal under-subgroups:$C_{10}$$C_4$
Autjugate subgroups:158400.f.7920.o1.b1158400.f.7920.o1.c1158400.f.7920.o1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed