Properties

Label 158400.f.2640.c1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{4} \cdot 3 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_{20}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 10 & 9 & 3 & 6 \\ 6 & 0 & 1 & 6 \\ 9 & 7 & 1 & 0 \\ 8 & 3 & 6 & 3 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 3 & 8 \\ 6 & 4 & 3 & 4 \\ 7 & 8 & 1 & 10 \\ 9 & 5 & 9 & 8 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 2 & 8 \\ 10 & 7 & 3 & 5 \\ 9 & 8 & 4 & 2 \\ 9 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2\times \SL(2,11)$
Order: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $C_2\times \PGL(2,11)$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_4\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}\times \SL(2,11)$
Normalizer:$C_{15}:Q_8\times \SL(2,11)$
Minimal over-subgroups:$C_3:C_{220}$$C_{15}:C_{20}$$C_3:C_{60}$$C_6:C_{20}$$C_{15}:Q_8$$C_{15}:Q_8$
Maximal under-subgroups:$C_{30}$$C_{20}$$C_3:C_4$
Autjugate subgroups:158400.f.2640.c1.b1158400.f.2640.c1.c1158400.f.2640.c1.d1

Other information

Möbius function not computed
Projective image not computed