Properties

Label 158400.f.7920.l1.b1
Order $ 2^{2} \cdot 5 $
Index $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:C_4$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 6 & 2 & 5 & 8 \\ 9 & 3 & 1 & 5 \\ 9 & 4 & 8 & 9 \\ 4 & 9 & 2 & 5 \end{array}\right), \left(\begin{array}{rrrr} 2 & 5 & 7 & 1 \\ 2 & 2 & 9 & 2 \\ 5 & 0 & 9 & 2 \\ 4 & 4 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$C_{20}:C_{20}$
Normal closure:$C_3:C_4\times \SL(2,11)$
Core:$C_2$
Minimal over-subgroups:$C_5:C_{20}$$C_{15}:C_4$$C_{10}:C_4$
Maximal under-subgroups:$C_{10}$$C_4$
Autjugate subgroups:158400.f.7920.l1.a1

Other information

Number of subgroups in this conjugacy class$396$
Möbius function not computed
Projective image$C_5\times \SL(2,11):D_6$