Properties

Label 158400.f.660.e1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}:C_{12}$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 8 & 9 & 5 & 2 \\ 4 & 3 & 1 & 10 \\ 10 & 3 & 1 & 6 \\ 9 & 0 & 5 & 5 \end{array}\right), \left(\begin{array}{rrrr} 3 & 7 & 0 & 6 \\ 8 & 10 & 5 & 8 \\ 7 & 6 & 5 & 6 \\ 4 & 2 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 3 & 8 \\ 6 & 4 & 3 & 4 \\ 7 & 8 & 1 & 10 \\ 9 & 5 & 9 & 8 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 2 & 8 \\ 10 & 7 & 3 & 5 \\ 9 & 8 & 4 & 2 \\ 9 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 2 & 1 & 4 & 4 \\ 7 & 10 & 6 & 9 \\ 9 & 3 & 9 & 3 \\ 6 & 10 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2^3:D_4\times F_5$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{60}$
Normalizer:$C_{15}:(Q_8\times C_{20})$
Normal closure:$C_{12}\times \SL(2,11)$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_{12}\times \SL(2,5)$$C_{12}\times \SL(2,5)$$C_{20}:C_{60}$$C_{15}:(C_4\times Q_8)$
Maximal under-subgroups:$C_2\times C_{60}$$C_{10}:C_{12}$$C_{10}:C_{12}$$C_{20}:C_4$$C_4\times C_{12}$

Other information

Number of subgroups in this conjugacy class$66$
Möbius function not computed
Projective image not computed