Properties

Label 158400.f.3960.q1.d1
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times Q_8$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 8 & 3 & 2 & 3 \\ 10 & 8 & 8 & 0 \\ 3 & 7 & 6 & 2 \\ 1 & 7 & 4 & 9 \end{array}\right), \left(\begin{array}{rrrr} 4 & 6 & 9 & 0 \\ 8 & 7 & 0 & 2 \\ 4 & 0 & 7 & 6 \\ 0 & 7 & 8 & 4 \end{array}\right), \left(\begin{array}{rrrr} 1 & 1 & 2 & 10 \\ 6 & 4 & 2 & 0 \\ 10 & 0 & 8 & 4 \\ 7 & 3 & 8 & 3 \end{array}\right), \left(\begin{array}{rrrr} 6 & 9 & 9 & 1 \\ 2 & 1 & 10 & 7 \\ 7 & 1 & 2 & 7 \\ 8 & 0 & 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_{10}^2.C_2^3$
Normal closure:$C_3:Q_8\times \SL(2,11)$
Core:$C_4$
Minimal over-subgroups:$C_{44}.C_{10}$$Q_8\times C_5^2$$C_{15}:Q_8$$Q_8\times C_{10}$
Maximal under-subgroups:$C_{20}$$C_{20}$$C_{20}$$Q_8$
Autjugate subgroups:158400.f.3960.q1.a1158400.f.3960.q1.b1158400.f.3960.q1.c1

Other information

Number of subgroups in this conjugacy class$198$
Möbius function not computed
Projective image not computed