Properties

Label 158400.f.39600.b1.b1
Order $ 2^{2} $
Index $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(39600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rrrr} 4 & 6 & 9 & 0 \\ 8 & 7 & 0 & 2 \\ 4 & 0 & 7 & 6 \\ 0 & 7 & 8 & 4 \end{array}\right), \left(\begin{array}{rrrr} 6 & 9 & 9 & 1 \\ 2 & 1 & 10 & 7 \\ 7 & 1 & 2 & 7 \\ 8 & 0 & 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_5\times S_3\times \SL(2,11)$
Order: \(39600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $C_2\times C_4\times \PSL(2,11).C_2\times S_3$
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$(C_2\times C_{60}).\PSL(2,11)$
Normalizer:$C_{15}:Q_8\times \SL(2,11)$
Minimal over-subgroups:$C_{44}$$C_{20}$$C_{20}$$C_{20}$$C_{20}$$C_{12}$$C_{12}$$C_{12}$$C_2\times C_4$$Q_8$$Q_8$
Maximal under-subgroups:$C_2$
Autjugate subgroups:158400.f.39600.b1.a1

Other information

Möbius function not computed
Projective image not computed