Properties

Label 15840.q.330.d1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,3)$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,8,9,5)(4,6,11,10), (1,9)(4,11)(5,8)(6,10), (1,8)(2,7)(4,11)(5,9), (1,4,9,11)(5,6,8,10), (1,5,11)(2,7,3)(4,9,8)\rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $C_2\times M_{11}$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times \GL(2,3)$
Normal closure:$M_{11}$
Core:$C_1$
Minimal over-subgroups:$M_{11}$$C_2\times \GL(2,3)$
Maximal under-subgroups:$\SL(2,3)$$\SD_{16}$$D_6$

Other information

Number of subgroups in this conjugacy class$165$
Möbius function$1$
Projective image$C_2\times M_{11}$