Properties

Label 15840.q.220.g1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{2} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\PSU(3,2)$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,6,7,5)(3,8,9,4), (2,5,9)(3,6,7)(4,8,10), (2,3,7,9)(4,5,8,6), (2,4,6)(3,9,10)(5,8,7), (2,7)(3,9)(4,8)(5,6)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2\times M_{11}$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$W$$F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$F_9:C_2^2$
Normal closure:$M_{11}$
Core:$C_1$
Minimal over-subgroups:$A_6.C_2$$C_2\times \PSU(3,2)$$F_9:C_2$$F_9:C_2$
Maximal under-subgroups:$C_3^2:C_4$$C_3^2:C_4$$Q_8$

Other information

Number of subgroups in this conjugacy class$55$
Möbius function$-2$
Projective image$C_2\times M_{11}$