Properties

Label 15840.q.110.f1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_9:C_2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,10)(2,8)(4,6)(9,11), (1,10)(2,9)(3,5)(8,11), (1,2,11)(3,5,7)(8,9,10), (1,11,10,8)(2,3,9,5)(12,13), (1,5,10,3)(2,11,9,8), (1,9,3)(2,10,5)(7,11,8)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times M_{11}$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$F_9:C_2^2$
Normal closure:$C_2\times M_{11}$
Core:$C_1$
Minimal over-subgroups:$F_9:C_2^2$
Maximal under-subgroups:$\PSU(3,2)$$F_9$$\SOPlus(4,2)$$\SD_{16}$

Other information

Number of subgroups in this conjugacy class$55$
Möbius function$0$
Projective image$C_2\times M_{11}$