Properties

Label 15840.j.22.b1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 5 $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,5):S_3$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 7 & 9 & 7 & 9 \\ 1 & 8 & 3 & 7 \\ 4 & 7 & 3 & 2 \\ 4 & 4 & 10 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & 10 & 0 \\ 10 & 0 & 0 & 1 \\ 9 & 0 & 0 & 3 \\ 0 & 2 & 10 & 0 \end{array}\right), \left(\begin{array}{rrrr} 2 & 8 & 1 & 4 \\ 10 & 6 & 0 & 1 \\ 9 & 2 & 4 & 3 \\ 9 & 9 & 1 & 8 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 5 & 6 \\ 1 & 1 & 3 & 0 \\ 7 & 8 & 9 & 3 \\ 7 & 6 & 4 & 3 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $\SL(2,11):D_6$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(S_3\times D_4).\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $D_6\times S_5$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$W$$D_6\times A_5$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\SL(2,5):D_6$
Normal closure:$\SL(2,11):S_3$
Core:$C_3:C_4$
Minimal over-subgroups:$\SL(2,11):S_3$$\SL(2,5):D_6$
Maximal under-subgroups:$C_3\times \SL(2,5)$$\SL(2,5):C_2$$\SL(2,3):S_3$$D_{15}:C_4$$C_6.D_6$
Autjugate subgroups:15840.j.22.b1.a215840.j.22.b1.b115840.j.22.b1.b2

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image not computed