Properties

Label 15840.j.2.b1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,11):S_3$
Order: \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Index: \(2\)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 0 & 3 & 10 & 0 \\ 10 & 0 & 0 & 1 \\ 9 & 0 & 0 & 3 \\ 0 & 2 & 10 & 0 \end{array}\right), \left(\begin{array}{rrrr} 3 & 2 & 9 & 2 \\ 4 & 7 & 7 & 8 \\ 1 & 5 & 5 & 5 \\ 5 & 10 & 7 & 7 \end{array}\right), \left(\begin{array}{rrrr} 2 & 8 & 1 & 4 \\ 10 & 6 & 0 & 1 \\ 9 & 2 & 4 & 3 \\ 9 & 9 & 1 & 8 \end{array}\right), \left(\begin{array}{rrrr} 4 & 2 & 5 & 8 \\ 3 & 9 & 8 & 5 \\ 10 & 10 & 3 & 9 \\ 1 & 10 & 8 & 8 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $\SL(2,11):D_6$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(S_3\times D_4).\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2\times \PSL(2,11).C_2\times S_3$
$\card{W}$\(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\SL(2,11):D_6$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$\SL(2,11):D_6$
Maximal under-subgroups:$C_3\times \SL(2,11)$$\SL(2,11):C_2$$\SL(2,5):S_3$$\SL(2,5):S_3$$C_{33}:C_{20}$$C_{12}.D_6$
Autjugate subgroups:15840.j.2.b1.b1

Other information

Möbius function$-1$
Projective image not computed