Properties

Label 1584.516.3.a1
Order $ 2^{4} \cdot 3 \cdot 11 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{11}\times D_{12}$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Index: \(3\)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Generators: $a, c^{12}, c^{33}, c^{66}, b^{3}, c^{88}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{132}:D_6$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_{66}.C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_{66}.C_{10}.C_2^4$
$\card{\operatorname{res}(S)}$\(10560\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3\times D_{22}$, of order \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{11}\times D_{12}$
Normal closure:$C_{132}:D_6$
Core:$C_{12}\times D_{11}$
Minimal over-subgroups:$C_{132}:D_6$
Maximal under-subgroups:$C_{12}\times D_{11}$$S_3\times D_{22}$$C_{11}:D_{12}$$C_{11}\times D_{12}$$D_{132}$$D_4\times D_{11}$$C_2\times D_{12}$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-1$
Projective image$C_{66}:D_6$