Properties

Label 1584.171.22.b1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_{12}$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, b^{132}, b^{66}, b^{176}, c$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $C_{132}.D_6$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{33}.(C_2^5\times C_{10})$
$\operatorname{Aut}(H)$ $D_4\times \GL(2,3)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6\times C_{12}$
Normalizer:$C_{12}.C_{12}$
Normal closure:$C_{132}:C_6$
Core:$C_3\times C_{12}$
Minimal over-subgroups:$C_{132}:C_6$$C_{12}.C_{12}$
Maximal under-subgroups:$C_3\times C_{12}$$C_6^2$$C_3\times C_{12}$$C_2\times C_{12}$$C_2\times C_{12}$$C_2\times C_{12}$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image$S_3\times D_{11}$