Properties

Label 156816.b.198.N
Order $ 2^{3} \cdot 3^{2} \cdot 11 $
Index $ 2 \cdot 3^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{99}:D_4$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Index: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Generators: $\left(\begin{array}{rr} 160 & 0 \\ 0 & 276 \end{array}\right), \left(\begin{array}{rr} 321 & 0 \\ 0 & 372 \end{array}\right), \left(\begin{array}{rr} 140 & 0 \\ 0 & 108 \end{array}\right), \left(\begin{array}{rr} 124 & 0 \\ 0 & 381 \end{array}\right), \left(\begin{array}{rr} 290 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{396}.D_{198}$
Order: \(156816\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 11^{2} \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(5702400\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2\times C_{11}:(C_2^2\times C_{30})$
$W$$D_{22}$, of order \(44\)\(\medspace = 2^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_{396}$
Normalizer:$D_{44}.C_{198}$
Normal closure:$D_{198}:C_{18}$
Core:$C_2\times C_{198}$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed