Properties

Label 156816.b.22.A
Order $ 2^{3} \cdot 3^{4} \cdot 11 $
Index $ 2 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{198}:C_{18}$
Order: \(7128\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 11 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Generators: $\left(\begin{array}{rr} 290 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 228 & 0 \\ 0 & 249 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 34 \end{array}\right), \left(\begin{array}{rr} 314 & 0 \\ 0 & 110 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 93 \end{array}\right), \left(\begin{array}{rr} 0 & 5 \\ 159 & 0 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 0 & 270 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 312 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), and metabelian. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{396}.D_{198}$
Order: \(156816\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 11^{2} \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(5702400\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 11 \)
$\operatorname{Aut}(H)$ $C_{99}.C_{15}.C_6.C_2^4$
$W$$D_{198}$, of order \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_{396}$
Normalizer:$C_{396}.D_{198}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed