Properties

Label 156800.a.112.S
Order $ 2^{3} \cdot 5^{2} \cdot 7 $
Index $ 2^{4} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}\times D_{35}$
Order: \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \)
Index: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 9 & 0 \\ 0 & 224 \end{array}\right), \left(\begin{array}{rr} 0 & 125 \\ 9 & 0 \end{array}\right), \left(\begin{array}{rr} 81 & 0 \\ 0 & 170 \end{array}\right), \left(\begin{array}{rr} 249 & 0 \\ 0 & 79 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 153 \end{array}\right), \left(\begin{array}{rr} 98 & 0 \\ 0 & 238 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{280}.D_{280}$
Order: \(156800\)\(\medspace = 2^{7} \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(5160960\)\(\medspace = 2^{14} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^2\times C_4\times F_5\times F_7$
$W$$D_{70}$, of order \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{280}$
Normalizer:$C_{280}.D_{70}$
Normal closure:$D_{280}:C_{10}$
Core:$C_5\times C_{140}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed