Properties

Label 156800.a
Order \( 2^{7} \cdot 5^{2} \cdot 7^{2} \)
Exponent \( 2^{4} \cdot 5 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \cdot 5 \cdot 7 \)
$\card{Z(G)}$ \( 2^{3} \cdot 5 \cdot 7 \)
$\card{\Aut(G)}$ \( 2^{14} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \cdot 3^{2} \)
Perm deg. $40$
Trans deg. $560$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,2,5,11,4,7,13,15)(3,8,14,9,10,16,12,6)(17,18,19,21,20)(34,35,37,36,39,40,38), (1,3)(2,6)(4,10)(5,12)(7,9)(8,15)(11,16)(13,14)(18,20)(19,21)(35,38)(36,39)(37,40), (1,4)(2,7)(3,9,12,8,10,6,14,16)(5,13)(11,15)(17,19,20,18,21)(22,23,24,25,26,27,28)(29,30,31,32,33)(34,36,38,37,40,35,39) >;
 
Copy content gap:G := Group( (1,2,5,11,4,7,13,15)(3,8,14,9,10,16,12,6)(17,18,19,21,20)(34,35,37,36,39,40,38), (1,3)(2,6)(4,10)(5,12)(7,9)(8,15)(11,16)(13,14)(18,20)(19,21)(35,38)(36,39)(37,40), (1,4)(2,7)(3,9,12,8,10,6,14,16)(5,13)(11,15)(17,19,20,18,21)(22,23,24,25,26,27,28)(29,30,31,32,33)(34,36,38,37,40,35,39) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,11,4,7,13,15)(3,8,14,9,10,16,12,6)(17,18,19,21,20)(34,35,37,36,39,40,38)', '(1,3)(2,6)(4,10)(5,12)(7,9)(8,15)(11,16)(13,14)(18,20)(19,21)(35,38)(36,39)(37,40)', '(1,4)(2,7)(3,9,12,8,10,6,14,16)(5,13)(11,15)(17,19,20,18,21)(22,23,24,25,26,27,28)(29,30,31,32,33)(34,36,38,37,40,35,39)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4981748178272129251645973162594888676662102327839073201216944721110816580172220748147330648759,156800)'); a = G.1; b = G.2; c = G.7;
 

Group information

Description:$C_{280}.D_{280}$
Order: \(156800\)\(\medspace = 2^{7} \cdot 5^{2} \cdot 7^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(5160960\)\(\medspace = 2^{14} \cdot 3^{2} \cdot 5 \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_5$ x 2, $C_7$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 7 8 10 14 16 20 28 35 40 56 70 80 112 140 280 560
Elements 1 283 292 24 48 608 1192 1824 1120 1408 2256 1152 3392 5664 10176 4480 6720 20544 68736 26880 156800
Conjugacy classes   1 3 8 14 27 28 42 81 4 152 300 588 592 1176 1764 16 24 6960 27744 96 39620
Divisions 1 3 5 4 5 9 11 14 1 21 27 26 41 53 75 1 1 149 297 1 745

Minimal presentations

Permutation degree:$40$
Transitive degree:$560$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\COPlus(2,281)$
Presentation: $\langle a, b, c \mid a^{2}=b^{280}=c^{280}=[a,b]=[b,c]=1, c^{a}=b^{139}c^{279} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([11, 2, 2, 2, 2, 5, 7, 2, 2, 2, 5, 7, 56, 90, 124, 323, 12051892, 226, 13748775, 260, 15356096, 294, 16815049, 658, 16320490]); a,b,c := Explode([G.1, G.2, G.7]); AssignNames(~G, ["a", "b", "b2", "b4", "b8", "b40", "c", "c2", "c4", "c8", "c40"]);
 
Copy content gap:G := PcGroupCode(4981748178272129251645973162594888676662102327839073201216944721110816580172220748147330648759,156800); a := G.1; b := G.2; c := G.7;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4981748178272129251645973162594888676662102327839073201216944721110816580172220748147330648759,156800)'); a = G.1; b = G.2; c = G.7;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4981748178272129251645973162594888676662102327839073201216944721110816580172220748147330648759,156800)'); a = G.1; b = G.2; c = G.7;
 
Permutation group:Degree $40$ $\langle(1,2,5,11,4,7,13,15)(3,8,14,9,10,16,12,6)(17,18,19,21,20)(34,35,37,36,39,40,38) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,2,5,11,4,7,13,15)(3,8,14,9,10,16,12,6)(17,18,19,21,20)(34,35,37,36,39,40,38), (1,3)(2,6)(4,10)(5,12)(7,9)(8,15)(11,16)(13,14)(18,20)(19,21)(35,38)(36,39)(37,40), (1,4)(2,7)(3,9,12,8,10,6,14,16)(5,13)(11,15)(17,19,20,18,21)(22,23,24,25,26,27,28)(29,30,31,32,33)(34,36,38,37,40,35,39) >;
 
Copy content gap:G := Group( (1,2,5,11,4,7,13,15)(3,8,14,9,10,16,12,6)(17,18,19,21,20)(34,35,37,36,39,40,38), (1,3)(2,6)(4,10)(5,12)(7,9)(8,15)(11,16)(13,14)(18,20)(19,21)(35,38)(36,39)(37,40), (1,4)(2,7)(3,9,12,8,10,6,14,16)(5,13)(11,15)(17,19,20,18,21)(22,23,24,25,26,27,28)(29,30,31,32,33)(34,36,38,37,40,35,39) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,11,4,7,13,15)(3,8,14,9,10,16,12,6)(17,18,19,21,20)(34,35,37,36,39,40,38)', '(1,3)(2,6)(4,10)(5,12)(7,9)(8,15)(11,16)(13,14)(18,20)(19,21)(35,38)(36,39)(37,40)', '(1,4)(2,7)(3,9,12,8,10,6,14,16)(5,13)(11,15)(17,19,20,18,21)(22,23,24,25,26,27,28)(29,30,31,32,33)(34,36,38,37,40,35,39)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 94 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{281})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(281) | [[1, 0, 0, 3], [3, 0, 0, 94], [0, 1, 1, 0]] >;
 
Copy content gap:G := Group([[[ Z(281)^0, 0*Z(281) ], [ 0*Z(281), Z(281) ]], [[ Z(281), 0*Z(281) ], [ 0*Z(281), Z(281)^279 ]], [[ 0*Z(281), Z(281)^0 ], [ Z(281)^0, 0*Z(281) ]]]);
 
Copy content sage:MS = MatrixSpace(GF(281), 2, 2) G = MatrixGroup([MS([[1, 0], [0, 3]]), MS([[3, 0], [0, 94]]), MS([[0, 1], [1, 0]])])
 
Direct product: $C_5$ $\, \times\, $ $C_7$ $\, \times\, $ $(D_{280}:C_8)$
Semidirect product: $C_{35}^2$ $\,\rtimes\,$ $(C_8\wr C_2)$ $C_7^2$ $\,\rtimes\,$ $(C_{40}\wr C_2)$ $C_5^2$ $\,\rtimes\,$ $(C_{56}\wr C_2)$ more information
Trans. wreath product: not computed
Possibly split product: $C_{140}^2$ . $D_4$ $D_{280}$ . $C_{280}$ $C_{280}$ . $D_{280}$ $C_{280}^2$ . $C_2$ all 249

Elements of the group are displayed as matrices in $\GL_{2}(\F_{281})$.

Homology

Abelianization: $C_{2} \times C_{280} \simeq C_{2} \times C_{8} \times C_{5} \times C_{7}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 15056 subgroups in 1984 conjugacy classes, 268 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{280}$ $G/Z \simeq$ $D_{280}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{280}$ $G/G' \simeq$ $C_2\times C_{280}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_4\times C_8$ $G/\Phi \simeq$ $C_{35}\times D_{70}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{280}^2$ $G/\operatorname{Fit} \simeq$ $C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{280}.D_{280}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{35}\times C_{70}$ $G/\operatorname{soc} \simeq$ $D_4:C_8$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_8\wr C_2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$

Subgroup diagram and profile

Series

Derived series $C_{280}.D_{280}$ $\rhd$ $C_{280}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{280}.D_{280}$ $\rhd$ $C_{280}^2$ $\rhd$ $C_{140}\times C_{280}$ $\rhd$ $C_{70}\times C_{280}$ $\rhd$ $C_{35}\times C_{280}$ $\rhd$ $C_7\times C_{280}$ $\rhd$ $C_{280}$ $\rhd$ $C_{140}$ $\rhd$ $C_{70}$ $\rhd$ $C_{35}$ $\rhd$ $C_7$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{280}.D_{280}$ $\rhd$ $C_{280}$ $\rhd$ $C_{140}$ $\rhd$ $C_{70}$ $\rhd$ $C_{35}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{280}$ $\lhd$ $C_2\times C_{280}$ $\lhd$ $C_4\times C_{280}$ $\lhd$ $C_8\times C_{280}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $39620 \times 39620$ character table is not available for this group.

Rational character table

The $745 \times 745$ rational character table is not available for this group.