Properties

Label 1568.629.16.b1.a1
Order $ 2 \cdot 7^{2} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times C_{14}$
Order: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $b^{14}c^{21}, c^{4}, b^{4}c^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{28}.D_{28}$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_6^2\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_6^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(224\)\(\medspace = 2^{5} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{14}\times C_{28}$
Normalizer:$C_{28}.D_{14}$
Normal closure:$C_{14}^2$
Core:$C_7^2$
Minimal over-subgroups:$C_{14}^2$
Maximal under-subgroups:$C_7^2$$C_{14}$$C_{14}$$C_{14}$$C_{14}$$C_{14}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_4.D_{28}$