Subgroup ($H$) information
Description: | $C_{14}$ |
Order: | \(14\)\(\medspace = 2 \cdot 7 \) |
Index: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$b^{14}c^{21}, c^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{28}.D_{28}$ |
Order: | \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7.(C_6^2\times D_4).C_2^3$ |
$\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(S)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{28}.D_{14}$ | |
Normalizer: | $C_{28}.D_{14}$ | |
Normal closure: | $C_2\times C_{14}$ | |
Core: | $C_7$ | |
Minimal over-subgroups: | $C_7\times C_{14}$ | $C_2\times C_{14}$ |
Maximal under-subgroups: | $C_7$ | $C_2$ |
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_4.D_{28}$ |