Properties

Label 1568.607.28.j1.d1
Order $ 2^{3} \cdot 7 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{28}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $b^{21}c^{21}, b^{4}c^{4}, b^{14}, c^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{14}^2.C_2^3$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{14}.(C_6^2\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(112\)\(\medspace = 2^{4} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{14}\times C_{28}$
Normalizer:$C_{28}:C_{28}$
Normal closure:$C_{14}\times C_{28}$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_{14}\times C_{28}$$C_4:C_{28}$
Maximal under-subgroups:$C_2\times C_{14}$$C_{28}$$C_2\times C_4$
Autjugate subgroups:1568.607.28.j1.a11568.607.28.j1.b11568.607.28.j1.c11568.607.28.j1.e11568.607.28.j1.f1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{14}\times D_{14}$