Subgroup ($H$) information
| Description: | $C_{28}:C_{28}$ |
| Order: | \(784\)\(\medspace = 2^{4} \cdot 7^{2} \) |
| Index: | \(2\) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Generators: |
$b^{7}, c^{14}, b^{4}, c^{4}, c^{7}, b^{14}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, nonabelian, and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $C_{14}^2.C_2^3$ |
| Order: | \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{14}.(C_6^2\times D_4).C_2^3$ |
| $\operatorname{Aut}(H)$ | $(C_6\times C_2^2\wr C_2).\SO(3,7)$ |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_3^2 \times (C_2^4:D_4)$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| $W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $C_2\times D_{14}$ |