Properties

Label 15600.d.26.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5^{2} $
Index $ 2 \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:(C_4\times S_3)$
Order: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Index: \(26\)\(\medspace = 2 \cdot 13 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left[ \left(\begin{array}{rrrr} 3 & 2 & 0 & 3 \\ 4 & 3 & 2 & 3 \\ 4 & 2 & 4 & 3 \\ 2 & 1 & 0 & 3 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 2 & 0 & 1 & 1 \\ 2 & 1 & 1 & 4 \\ 3 & 0 & 0 & 1 \\ 4 & 0 & 3 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 1 & 1 & 4 & 2 \\ 3 & 4 & 4 & 1 \\ 2 & 3 & 1 & 1 \\ 3 & 1 & 1 & 3 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 3 & 0 & 3 & 1 \\ 3 & 4 & 1 & 2 \\ 2 & 0 & 3 & 3 \\ 1 & 0 & 2 & 3 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 2 & 2 & 3 & 4 \\ 0 & 3 & 3 & 4 \\ 3 & 2 & 3 & 2 \\ 1 & 1 & 2 & 1 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 2 & 3 & 1 & 2 \\ 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & 1 \\ 3 & 3 & 0 & 3 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $\POMinus(4,5)$
Order: \(15600\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \)
Exponent: \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 26T57.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,25).C_2^2$, of order \(31200\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \)
$\operatorname{Aut}(H)$ $F_{25}:C_2$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
$W$$C_5^2:(C_4\times S_3)$, of order \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^2:(C_4\times S_3)$
Normal closure:$\POMinus(4,5)$
Core:$C_1$
Minimal over-subgroups:$\POMinus(4,5)$
Maximal under-subgroups:$C_5^2:D_6$$C_5^2:C_{12}$$C_5^2:C_3:C_4$$D_5:F_5$$C_4\times S_3$

Other information

Number of subgroups in this conjugacy class$26$
Möbius function$-1$
Projective image$\POMinus(4,5)$