Properties

Label 15552.fa.9.a1
Order $ 2^{6} \cdot 3^{3} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.C_2^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,6)(2,8)(3,5)(4,7), (2,5)(3,8), (9,11,10), (1,2)(3,7)(4,8)(5,6)(9,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6^3).C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $\PSU(3,2).C_6^2.C_2^6$
$W$$C_6^3:C_2^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^3.C_2^3$
Normal closure:$C_6^4:D_6$
Core:$C_2^2\times C_6^2$
Minimal over-subgroups:$C_3^4.C_2\wr C_2^2$
Maximal under-subgroups:$C_6^3:C_2^2$$C_6^2.D_{12}$$C_6^2.D_{12}$$C_6^2.D_{12}$$C_6^3.C_2^2$$C_6^3.C_2^2$$C_6^3.C_2^2$$(C_6\times C_{12}):D_4$$C_2^4:S_3^2$$C_2^4:S_3^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^4:D_6$