Properties

Label 15552.fa.27.f1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:S_3^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,6)(2,8)(3,5)(4,7), (1,7)(2,5)(3,8)(4,6)(12,17,19)(15,18,16), (13,20,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6^3).C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $(C_2^3\times S_3^2).C_2^4$
$W$$D_6^2:C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^4:S_3^2$
Normal closure:$C_6^4:D_6$
Core:$C_2^4$
Minimal over-subgroups:$C_6^3.C_2^3$$C_6^3.C_2^3$
Maximal under-subgroups:$C_2^3:S_3^2$$C_6^2.D_4$$C_6^2.D_4$$C_6^2.D_4$$C_6^2:D_4$$C_6^2:D_4$$C_6^2:D_4$$C_2^4:D_6$$C_2^4:D_6$

Other information

Number of subgroups in this autjugacy class$81$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$C_6^4:D_6$