Properties

Label 15552.dp.3.b1
Order $ 2^{6} \cdot 3^{4} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.(C_6\times S_4)$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(3\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ab^{2}c^{12}d^{4}e^{5}, d^{3}e^{3}, c^{18}, c^{28}e^{3}, e^{3}, b^{3}e^{4}, b^{2}, c^{12}, d^{2}e^{2}, c^{9}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^4.D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^3.C_2^4$
$\operatorname{Aut}(H)$ $C_6^2.C_6^2.C_2^3$
$W$$C_6^3.D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2.(C_6\times S_4)$
Normal closure:$C_6^4.D_6$
Core:$C_2\times C_2^2:C_9.(C_6\times S_3)$
Minimal over-subgroups:$C_6^4.D_6$
Maximal under-subgroups:$C_2\times C_2^2:C_9.(C_6\times S_3)$$C_6^2.(C_6\times A_4)$$C_3^3.\GL(2,\mathbb{Z}/4)$$C_6^3.D_6$$C_3^3.\GL(2,\mathbb{Z}/4)$$C_6^3.D_6$$C_6^3.D_6$$D_4\times C_3^2.S_4$$C_3^3.D_4^2$$(C_2^2\times D_6):D_{18}$$C_6^2.S_3^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3.S_3^2$