Properties

Label 1536.408528972.768.b1
Order $ 2 $
Index $ 2^{8} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 15 & 8 \\ 8 & 7 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_4^4:C_6$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_4^3:C_{12}$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_4^2:C_3.D_4\times \GL(2,\mathbb{Z}/4)$
Outer Automorphisms: $D_4\times \GL(2,\mathbb{Z}/4)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2:C_3.D_4\times C_2^6.S_4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(147456\)\(\medspace = 2^{14} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4^4:C_6$
Normalizer:$C_4^4:C_6$
Complements:$C_4^3:C_{12}$
Minimal over-subgroups:$C_6$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_4^3:C_{12}$