Properties

Label 1536.408528972.1.a1
Order $ 2^{9} \cdot 3 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^4:C_6$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Index: $1$
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 9 & 8 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 8 \\ 8 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 8 & 9 \end{array}\right), \left(\begin{array}{rr} 5 & 4 \\ 4 & 9 \end{array}\right), \left(\begin{array}{rr} 12 & 11 \\ 9 & 3 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 12 & 5 \end{array}\right), \left(\begin{array}{rr} 13 & 12 \\ 8 & 5 \end{array}\right), \left(\begin{array}{rr} 7 & 8 \\ 0 & 15 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, monomial, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_4^4:C_6$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2:C_3.D_4\times C_2^6.S_4$
$\operatorname{Aut}(H)$ $C_4^2:C_3.D_4\times C_2^6.S_4$
$W$$C_4^2:C_3$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4^2$
Normalizer:$C_4^4:C_6$
Complements:$C_1$
Maximal under-subgroups:$C_4\wr C_3\times C_2^2$$C_4^3:C_{12}$$C_2\times C_4^4$$C_2\times A_4\times C_4^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_4^2:C_3$