Properties

Label 1536.408528972.4.b1
Order $ 2^{7} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5.A_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 7 & 8 \\ 0 & 15 \end{array}\right), \left(\begin{array}{rr} 13 & 12 \\ 8 & 5 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 12 & 5 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 12 & 11 \\ 9 & 3 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 8 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 8 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 8 \\ 8 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_4^4:C_6$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2:C_3.D_4\times C_2^6.S_4$
$\operatorname{Aut}(H)$ $C_4^2:C_3.D_4\times \PSL(2,7)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_4^2:C_3$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4^2$
Normalizer:$C_4^4:C_6$
Minimal over-subgroups:$C_4\wr C_3\times C_2^2$
Maximal under-subgroups:$C_2^4.A_4$$C_2^4.A_4$$C_2^3\times C_4^2$$C_2^3\times A_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$C_2^4.A_4$