Properties

Label 1536.408528972.192.e1
Order $ 2^{3} $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 7 & 8 \\ 0 & 15 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 8 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 8 & 9 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_4^4:C_6$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $A_4\times C_4^2$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_4\times \GL(2,\mathbb{Z}/4)$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Outer Automorphisms: $C_2\times \GL(2,\mathbb{Z}/4)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2:C_3.D_4\times C_2^6.S_4$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24576\)\(\medspace = 2^{13} \cdot 3 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_2\times C_4^4$
Normalizer:$C_4^4:C_6$
Minimal over-subgroups:$C_2\times A_4$$C_2^4$$C_2^2\times C_4$$C_2^2\times C_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_4^3:C_{12}$