Subgroup ($H$) information
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Exponent: | \(2\) |
| Generators: |
$\left(\begin{array}{rr}
7 & 8 \\
0 & 15
\end{array}\right), \left(\begin{array}{rr}
1 & 8 \\
8 & 1
\end{array}\right), \left(\begin{array}{rr}
9 & 0 \\
8 & 9
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $C_4^4:C_6$ |
| Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $A_4\times C_4^2$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $S_4\times \GL(2,\mathbb{Z}/4)$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| Outer Automorphisms: | $C_2\times \GL(2,\mathbb{Z}/4)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4^2:C_3.D_4\times C_2^6.S_4$ |
| $\operatorname{Aut}(H)$ | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(S)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(24576\)\(\medspace = 2^{13} \cdot 3 \) |
| $W$ | $C_3$, of order \(3\) |
Related subgroups
| Centralizer: | $C_2\times C_4^4$ | |||
| Normalizer: | $C_4^4:C_6$ | |||
| Minimal over-subgroups: | $C_2\times A_4$ | $C_2^4$ | $C_2^2\times C_4$ | $C_2^2\times C_4$ |
| Maximal under-subgroups: | $C_2^2$ | $C_2^2$ | $C_2^2$ |
Other information
| Number of subgroups in this autjugacy class | $4$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | $0$ |
| Projective image | $C_4^3:C_{12}$ |