Properties

Label 1536.201107024.8.CD
Order $ 2^{6} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:C_2^4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, f^{2}, f, b^{3}c^{3}e, b^{2}, c^{2}, eg$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Ambient group ($G$) information

Description: $S_3\times C_2^5:D_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_2^7.A_4.C_2^5\times S_3$
$\operatorname{Aut}(H)$ $C_2^9.(D_6\times S_4)$, of order \(147456\)\(\medspace = 2^{14} \cdot 3^{2} \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$D_{12}:C_2^5$
Normal closure:$C_{12}:C_2^5$
Core:$C_2^3\times D_6$
Minimal over-subgroups:$C_{12}:C_2^5$$D_{12}:C_2^4$
Maximal under-subgroups:$C_2^3\times D_6$$D_4\times D_6$$D_4\times D_6$$C_{12}:C_2^3$$C_2^3:D_6$$D_4\times D_6$$C_2^3\times D_6$$C_{12}:C_2^3$$D_4\times D_6$$C_2^3:D_6$$C_2^2\times D_{12}$$D_4\times D_6$$D_4\times C_2^3$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$6$
Möbius function not computed
Projective image not computed