Properties

Label 1536.201107024.4.BK
Order $ 2^{7} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_2^3:D_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{2}, f^{2}g, b^{3}, f, b^{2}, g, ce$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $S_3\times C_2^5:D_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_2^7.A_4.C_2^5\times S_3$
$\operatorname{Aut}(H)$ $C_2^8.C_3.D_6.C_2^4$
$\card{W}$\(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_6.D_4^2$
Normal closure:$D_6.D_4^2$
Core:$C_{12}:C_2^4$
Minimal over-subgroups:$D_6.D_4^2$
Maximal under-subgroups:$C_{12}:C_2^4$$C_{12}:C_2^4$$C_2^4.D_6$$C_{12}:C_2^4$$C_2^4.D_6$$C_2^4.D_6$$D_6.C_4^2$$C_3\times C_2^3:D_4$$C_2^4.D_6$$C_2^4.D_6$$C_2^3:D_{12}$$C_2^4.D_6$$C_2^3:D_{12}$$C_2^3:D_{12}$$(C_2\times C_4):D_{12}$$C_2^4:D_4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$6$
Möbius function not computed
Projective image not computed