Subgroup ($H$) information
| Description: | $S_3\times C_2^3:D_4$ |
| Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a, c^{2}, f^{2}g, b^{3}, f, b^{2}, g, ce$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $S_3\times C_2^5:D_4$ |
| Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times C_2^7.A_4.C_2^5\times S_3$ |
| $\operatorname{Aut}(H)$ | $C_2^8.C_3.D_6.C_2^4$ |
| $\card{W}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $12$ |
| Number of conjugacy classes in this autjugacy class | $6$ |
| Möbius function | not computed |
| Projective image | not computed |