Properties

Label 1536.201107024.1536.a1
Order $ 1 $
Index $ 2^{9} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $S_3\times C_2^5:D_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Quotient group ($Q$) structure

Description: $S_3\times C_2^5:D_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2\times C_2^7.A_4.C_2^5\times S_3$
Outer Automorphisms: $C_3^2:D_6\times S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_2^7.A_4.C_2^5\times S_3$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\card{W}$$1$

Related subgroups

Centralizer:$S_3\times C_2^5:D_4$
Normalizer:$S_3\times C_2^5:D_4$
Complements:$S_3\times C_2^5:D_4$
Minimal over-subgroups:$C_3$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed