Properties

Label 1536.10766179.4.i1.a1
Order $ 2^{7} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{24}.C_8$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $abd, cd^{30}, d^{12}, b^{6}d^{30}, b^{4}d^{36}, d^{16}, d^{24}, d^{30}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{16}).D_{24}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2.C_2^6.C_2^6)$
$\operatorname{Aut}(H)$ $C_3:(C_2^3.C_2^5.C_2^3)$
$\card{W}$\(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_2\times C_{16}).D_{24}$
Minimal over-subgroups:$C_4.(C_8\times D_{12})$$(C_8\times C_{24}):C_4$$C_{24}.(C_4\times C_8)$
Maximal under-subgroups:$C_2\times C_4\times C_{24}$$C_6:\OD_{32}$$C_{24}.C_8$$C_{24}.C_8$$C_2^3.\OD_{16}$

Other information

Möbius function not computed
Projective image not computed