Properties

Label 1536.10766179.2.g1.a1
Order $ 2^{8} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{24}.(C_4\times C_8)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(2\)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $a, d^{16}, d^{30}, b^{4}d^{12}, b^{3}d^{3}, c, d^{24}, d^{12}, b^{2}cd^{42}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{16}).D_{24}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2.C_2^6.C_2^6)$
$\operatorname{Aut}(H)$ $C_3:((C_2^4\times C_8).C_2^6)$
$\card{W}$\(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_2\times C_{16}).D_{24}$
Complements:$C_2$
Minimal over-subgroups:$(C_2\times C_{16}).D_{24}$
Maximal under-subgroups:$C_2\times C_4\times C_{48}$$C_2\times C_{24}.C_8$$C_2\times C_{24}.C_8$$C_8.(C_4\times C_8)$

Other information

Möbius function not computed
Projective image not computed