Properties

Label 15296.54.478.a1.b1
Order $ 2^{5} $
Index $ 2 \cdot 239 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(478\)\(\medspace = 2 \cdot 239 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ab^{7409}, b^{478}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $Q_{64}\times C_{239}$
Order: \(15296\)\(\medspace = 2^{6} \cdot 239 \)
Exponent: \(7648\)\(\medspace = 2^{5} \cdot 239 \)
Nilpotency class:$5$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Quotient group ($Q$) structure

Description: $C_{478}$
Order: \(478\)\(\medspace = 2 \cdot 239 \)
Exponent: \(478\)\(\medspace = 2 \cdot 239 \)
Automorphism Group: $C_{238}$, of order \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Outer Automorphisms: $C_{238}$, of order \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,239$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{238}\times C_8.(C_8\times D_4)$
$\operatorname{Aut}(H)$ $D_{16}:C_4$, of order \(128\)\(\medspace = 2^{7} \)
$W$$D_{16}$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_{478}$
Normalizer:$Q_{64}\times C_{239}$
Minimal over-subgroups:$Q_{32}\times C_{239}$$Q_{64}$
Maximal under-subgroups:$C_{16}$$Q_{16}$
Autjugate subgroups:15296.54.478.a1.a1

Other information

Möbius function$1$
Projective image$D_{16}\times C_{239}$