Subgroup ($H$) information
Description: | $Q_{32}$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(478\)\(\medspace = 2 \cdot 239 \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$ab^{7409}, b^{478}$
|
Nilpotency class: | $4$ |
Derived length: | $2$ |
The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $Q_{64}\times C_{239}$ |
Order: | \(15296\)\(\medspace = 2^{6} \cdot 239 \) |
Exponent: | \(7648\)\(\medspace = 2^{5} \cdot 239 \) |
Nilpotency class: | $5$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Quotient group ($Q$) structure
Description: | $C_{478}$ |
Order: | \(478\)\(\medspace = 2 \cdot 239 \) |
Exponent: | \(478\)\(\medspace = 2 \cdot 239 \) |
Automorphism Group: | $C_{238}$, of order \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \) |
Outer Automorphisms: | $C_{238}$, of order \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,239$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{238}\times C_8.(C_8\times D_4)$ |
$\operatorname{Aut}(H)$ | $D_{16}:C_4$, of order \(128\)\(\medspace = 2^{7} \) |
$W$ | $D_{16}$, of order \(32\)\(\medspace = 2^{5} \) |
Related subgroups
Centralizer: | $C_{478}$ | |
Normalizer: | $Q_{64}\times C_{239}$ | |
Minimal over-subgroups: | $Q_{32}\times C_{239}$ | $Q_{64}$ |
Maximal under-subgroups: | $C_{16}$ | $Q_{16}$ |
Autjugate subgroups: | 15296.54.478.a1.a1 |
Other information
Möbius function | $1$ |
Projective image | $D_{16}\times C_{239}$ |